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Coupled map networks as communication schemes
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J. Jiménez and A. Marcano
Laboratorio de Feno´nemos no Lineales, Escuela de Fı´sica, Facultad de Ciencias Universidad Central de Venezuela, Caracas, Venez

~Received 28 August 2001; published 28 March 2002!

Networks of chaotic coupled maps are considered as string and language generators. It is shown that such
networks can be used as encrypting systems where the cipher text contains information about the evolution of
the network and also about the way to select the plain text symbols from the string associated with the network
evolution. The secret key provides the network parameters, such as the coupling strengths.
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Most languages produce aperiodic messages with fi
entropy@1#. Since this property is emblematic of chaotic sy
tems, they are potential candidates to model simple
guages and to design communication schemes@2–7#. Most
of these models and schemes have considered the use o
one chaotic dynamic, either for masking the message to
sent or for transmitting a controlled signal. However, the
procedures may result in poor security when used as a c
munication system@8–10#. On the other hand, a large num
ber of connected physiological units are involved in real la
guages. Thus, it seems interesting to explore the perform
of a network of interacting chaotic elements as a mode
generate simple languages and as communication schem

In this article we study networks of coupled chaotic ma
as generators of strings of symbols, and investigate their
tential use as an encrypting system. A coupled map netw
~CMN! can be defined as

xt11
i 5 f ~xt

i !1(
j 51

N

e i j xt
j , ~1!

wherext
i gives the states of the elementi ( i 51, . . . ,N) at

discrete timet; f (xt
i) is a real function describing the loca

dynamics;e i j are the coupling strengths among elements
the system; andN is the size of the network. Coupled ma
lattices have provided fruitful models for the study of a v
riety of spatiotemporal processes in spatially distributed s
tems@11#.

Equation~1! can be written in vector form as

xt115f~xt!1Ext . ~2!
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The state vector xt possesses N components xt

5(xt
1 ,xt

2 , . . . ,xt
N), corresponding to the states of the el

ments in the network. TheN3N elements of matrixE are
e i j , which we assume in general to be different among the
selves, i.e., the coupling is heterogeneous.

The system Eq.~2! can be used as a string generator a
thus it can produce a sequence of symbols. For simplicity,
shall consider a CMN consisting ofN57 maps. To each
CMN statext5(xt

1 ,xt
2 , . . . ,xt

7) we can assign a binary stat
(bt

1 bt
2 bt

3 bt
4 bt

5 bt
6 bt

7) by the following rule: bt
i50 if xt

i

,x* , and bt
i51 if xt

i.x* , where x* is some threshold
value. With a prefixed correspondence rule, each of the
possible seven-digit binary states (bt

1 bt
2 bt

3 bt
4 bt

5 bt
6 bt

7) can
be associated with one ASCII symbolzk among the set
Z1285$z1 ,z2 , . . . ,z128%. We takex* 50. In this case, each
seven-digit binary state corresponds to one of the 275128
‘‘Cartesian quadrants’’ in the seven-dimensional state sp
of the CMN, enough to assign an ASCII symbolzk (k
51,2, . . . ,128) to each ‘‘quadrant.’’

Let us assume that, starting from any initial conditionx0,
the state vector of the CMN visits all the ‘‘quadrants’’ durin
its evolution, so that all ASCII symbols inZ128 are generated
by the CMN dynamics. If we assign to the statext the ASCII
symbol corresponding to the ‘‘quadrant’’ wherext lies at
time t, the string a5(zk1

,zk2
, . . . ,zkt

, . . . ,zkT
) of ASCII

symbols will be generated up to timeT. We denote byuau
5T the length of the string, i.e., the number of iteratio
performed on the CMN system up to timet5T.

On the other hand, for a given set of ordered ASCII sy
bolsr5(p1 ,p2 , . . . ,pn), a sufficiently long stringa can be
expressed as a succession of substringsb l•pl ,
~3!
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whereb1•p1 is the substring beginning atzk1
and ending at

the first occurrence of symbolp1, the substringb2•p2 begins
afterp1 and ends at the first occurrence of symbolp2, and so
on. For example, the string
e
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04520
a5~d,4,$,R,m,e,.,i ,&,H,1,t,5,v,?,u,K,g,a,i ,a,6,l !

~4!

is segmented by the word ‘‘Rival,’’ i.e.,r5(R,i ,v,a,l ) as
~5!
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The set of marker symbols (p1 ,p2 , . . . ,pl , . . . ,pn)
univocally determines how stringa is segmented by the rul
in Eq. ~3!.

Any stringa resulting from the evolution of the CMN ca
always be expressed as a concatenation of segmentsb l•pl ,
provided that there are no symbols forbidden by the dyna
ics of the CMN, i.e., all the ‘‘quadrants’’ are visited by th
state vectorxt . Let yl 21 be the state of the CMN when th
symbol pl 21 occurs at the end of substringb l 21•pl 21. The
next substringb l•pl depends only onyl 21 and on the sym-
bol pl . Then, the substringb l•pl can be expressed as

b l•pl5g~yl 21 ,pl !, ~6!

where the functiong is just the procedure described above
generate strings from the CMN dynamics starting fromx0
5yl 21 and ending at the first occurrence of symbolpl . Thus,
the functiong is the recipe by which a sequence of ASC
symbols is associated with the sequence of state vectors
ing from the evolution of the CMN. The autonomous evo
tion of the CMN system yields the string

a5g~x0 ,p1!•g~y1 ,p2!• . . . •g~yl 21 ,pl !• . . . . ~7!

The segmentation of stringa by a finite string r
5(p1 ,p2 , . . . ,pn) can be represented by ann-dimensional
vectorc(r) whose components are the natural numbers g
ing the lengthsub l•pl u. That is,

c~r!5„ug~x0 ,p1!u,ug~y1 ,p2!u, . . . ,ug~yn21 ,pn!u…. ~8!

Since the CMN can be iterated indefinitely, Eq.~8! just ex-
presses the segmentationc(r) for the first T
5( i 51

n ug(yi 21 ,pi)u symbols of the stringa. In the example
given in Eq.~5!, one getsc(r)5(4,4,6,5,4).

The segmentationc(r) in Eq. ~8! provides the position of
the symbols (p1 ,p2 , . . . ,pn) in stringa, and therefore it can
be used as the encryption of the plain textr
5(p1 ,p2 , . . . ,pn). That is, after a number of t
5( i 51

l ug(yi 21 ,pi)u iterations fromx0 the plain text symbol
pl is generated by the CMN evolution. If the local dynami
f (x) is public, the secret key may consist of the couplingse i j
and the initial conditionx0. Once the couplings are specifie
the autonomous evolution of the CMN will generate a str
a that depends only onx0. In other words, under autono
mous evolution, if the matrixE andx0 are used as a secre
key, the stringa will always be the same for a fixed key
-

ris-
-

-

Therefore, a numbern5uru symbols of stringa can be
known if the plain textr and its corresponding cipher tex
c(r) are known. Unknown elements between then known
symbols (p1 ,p2 , . . . ,pn) can be inferred by using new mes
sages encrypted with the same key, even when the new p
texts are unavailable. In the example given in Eq.~5!, the
word ‘‘Rival’’ is encrypted as c(R,i ,v,a,l )5(4,4,6,5,4);
therefore, after 19 iterations and after 23 iterations the CM
generates the symbols ‘‘a’’ and ‘‘ l ’’, respectively. If another
word has the encryptionc(r)5(4,4,4,4,3,4), it can be
guessed thatr5(R,i ,t,u,a,l ), and two additional symbols
of the stringa can be inferred.

Note that this decoding method is possible because,
the autonomous evolution of the CMN, the stringa is unique
for a given key. In order to avoid this limitation, a nonaut
nomous CMN evolution can be used. A possibility is to ma
the stringa dependent on the plain text to be encrypted. W
call this method text dependent encryption~TDE!. An ex-
ample of TDE is a CMN dynamic that is perturbed each tim
a symbol is encrypted. This perturbation could be, for e
ample, a change of sign in the states of the mapsxt

i each time
that a symbolpl is encrypted. In this case, when the pla
text r5(p1 ,p2 , . . . ,pn) is encrypted, the resulting CMN
evolution stringa can be expressed as

a~r!5g~x0 ,p1!•g~2y1 ,p2!• . . . •g~2yn21 ,pn!, ~9!

and the corresponding encryption is

c~r!5~ ug~x0 ,p1!u,ug~2y1 ,p2!u, . . . ,ug~2yn21 ,pn!u!.
~10!

Note that thel th segmentb l•pl of the stringa is univo-
cally determined by the previous (l 21) symbols in the plain
text r. Conversely, the encryptionc(r) in Eq. ~10! allows
one to reproduce the CMN dynamics generated during
encryption process, sincec(r) indicates at which iteration
steps the dynamics must be perturbed. Therefore, both
string a(r) and the plain textr can be reconstructed if th
appropriate key is used~i.e., the appropriate CMN param
eters and initial condition!. We call this encryption method
TDE(* 21), to indicate that the CMN vector state is mult
plied by (21) each time that a symbol is encrypted. T
encryption with autonomous CMN evolution can be deno
by TDE(*11). Other operations can be used in the TD
method.
1-2
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In principle, any aperiodic functionf (x) can be used as
local map in the CMN system, Eq.~1!. As an example, we
consider the unbounded local chaotic dynamics given by
logarithmic map@12# f (x)5b1 lnuxu. This map is chaotic,
with no periodic windows, in the parameter interv
bP(21,1). The unbounded character of the local functio
places no restrictions on the range of parameter values o
CMN system that can be explored. For local parameter
ues aboutb'0.5, and couplings randomly selected in t
interval ue i j u,0.1, ; i , j , all the ASCII symbols in the se
Z128 are generated by the seven-dimensional CMN w
about the same probability of 1/128, as can be seen in Fig
This shows that all the 27 ‘‘Cartesian quadrants’’ are visited
by the state vector of the CMN in about 27 iterations. Note
also that the standard deviation of the substring lengths
of the same order of magnitude as their average, whic
typical of an aperiodic string.

Another useful property of chaotic CMNs as encrypti
schemes is their sensitivity to initial conditions and/or co
plings. The sensitivity to the couplings can be measured
comparing two stringsa and a8 generated by two CMNs
identical to each other, except by one element in th
coupling matrices,e i j8 5e i j 1d i j . Figure 2 shows the mea
number of iterationŝ tdi f f& at which the stringsa and
a8 start to differ, as a function of the size of the perturbati
d i j . The various curves correspond to different truncatio
of the CMN states after each iterationt. The truncation used
consists of expressing the real value of each componen
the state vectorxt with a given number of significant digits
The truncated stateut is used to calculate the statext11 at
iteration t11. That is,xt115f(ut)1Eut . This truncation is
relevant since it can be used to make the numerical pro

FIG. 1. Mean distance between successive occurrences o
same symbolzk in an autonomous stringa of lengthuau550 000 as
a function ofk (k51,2, . . . ,128), for fixedb50.47. Whenr is a
string consisting of a repetition of the same symbolzk ~i.e., r

5zk ,zk , . . .[zk̄), the dots give the average^D t&[^ub l•zku& length

of segments inc( z̄k) @see Eq.~8!#. The dashed curve shows th

standard deviation of the segment lengths inc( z̄k). The upper dotted

curve displays the maximum values of the segment lengthsD t(zk̄)
in the 50 000 iterations; the minimum segment lengths lie betw
1 and 4.
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equivalent in computers with different precision.
Since the typical number of iterations to find a given sy

bol is about 2N, we measure the encrypting sensibilitydcri of
the CMN as the value ofd for which ^tdi f f&52N. Note that
dcri is a very small value (;10212 for a 10-significant digit
truncation!.

For a fixed value of the parameterb andN57, the maxi-
mum encrypting key consists of 737 coupling strengths and
seven initial conditionsx0

i . As shown in Fig. 2, a change o
d510210 in one of the coupling strengths is more tha
enough to modify the stringa after t'40. Therefore, there
are more than 10d

213N3(N11);10560 possible keys. Obvi-
ously, among all of these possibilities there are groups
keys that produce stringsa that are identical to each other u
to tdi f f@40, but the probability of finding two such keys
very small (;22Ntdi f f). In general, such a large number
possible keys is unnecessary, and in practice the key ca
reduced by using a set of random number seeds that are
to generate the 737 coupling strengths and the seven initi
conditionsx0

i . Alternatively, the system sizeN can be re-
duced in order to decrease the number of possible keys
to increase the encrypting speed.

As an example, forb50.5, x0
i 51.010.1i , and e i j

50.01(i 2 j /2) (i , j 51, . . . ,7), theencryption of the text
‘‘Rival ritual’’ would be

~a! using the autonomous CMN evolution@Eq. ~8!#,

128 44 18 530 33 505 7 206 97 95 8 170;

~b! using the encryption method TDE(*21) @Eq. ~10!#,

128 387 64 34 36 3 96 297 146 26 78 3;

~c! using the encryption method TDE(*21) @Eq. ~10!#,
but adding the small quantity 10210 to the coupling weight
e3 5,

he

n

FIG. 2. Mean number of iterationŝtdi f f& as a function of the
logarithm in base 10 of the size of the perturbationd, for b50.47.
The various curves correspond to different truncations of the C
states after each iterationt. The valuê tdi f f& is obtained by averag-
ing the 737 resultstdi f f(d i j 5d) for i , j 51,2, . . . ,7. Thelabels
indicate the number of significant digits of the components ofut

~i.e., 17sd indicates 17 significant digits!.
1-3
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425 176 20 156 8 85 234 43 32 87 224 80.

If we try to recover the plain text using the encryptio
method TDE(*21) in ~b!, but using the couplinge3 5
altered by the amountd3 5510210, the resulting decoded tex
is

0,3w7h$u lR9.

In the above example, theFORTRAN internal functionICHAR

has been used to assign a binary seven-digit number to
of the ASCII symbols in the setZ128.

Notice that, usingN58, the CMN dynamics can be em
ployed to generate strings with elements in a palette of
gray tones and therefore to encrypt images byte by byte
shown in Fig. 3.

In conclusion, we have shown how a CMN can be used

FIG. 3. The BMP~bitmap! image on the left has been encrypte
assuming b50.5, x0

i 51.010.1i , and e i j 50.01(i 2 j /2) (i , j
51, . . . ,8). On theright, the corresponding decoded image
shown when a slightly wrong key is used: we have added 10210 to
e35.
f

ys
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a string generator and as an encrypting system. The cip
text contains the information on how the CMN must
evolved and how to select the plain text symbols from
string associated with the CMN’s evolution. The secret k
consists of the coupling matrixE and the initial conditions.
The number of parameters involved in the secret key and
high sentivity of the generated strings to small perturbatio
of any of those parameters make the CMN encrypt
scheme difficult to break. This confers an advantage on
scheme, in terms of security, in comparison to communi
tion procedures based solely on one chaotic dynamic.
use of several coupled dynamics instead of just one allo
the transmission of entire sequences of the plain text a
time. The notation introduced allows one to place the p
posed encrypting method in a wide context. The implem
tation of variations of the method is straightforward. T
examples presented here show the encrypting performa
for a network of seven coupled logarithmic maps; howev
the method can be applied with networks of any size. Fina
we note that the CMN parameters determine both the pr
ability of occurrence of symbols and the transition probab
ity p(zj uzi) of observing symbolzi followed by symbolzj in
the string. Therefore, it is possible in principle to select t
CMN parameters in order to enhance or to inhibit some sy
bols and transitions. Since this is equivalent to select
grammatical rules, the CMN as string generators might be
interest in the development of language models.
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